Mark Scheme

Question 1

Video Solution: https://www.youtube.com/watch?v=0lqSSD9jYts

(a)
$$30^{2} = 2a.300$$

$$a = 1.5$$
(b)
$$0^{2} = 30^{2} - 2 \times 1.25s \qquad OR \qquad 0 = 30 - 1.25t_{2}$$

$$s = 360 \qquad t_{2} = 24 \qquad A1$$

$$300 + 30T + 360 = 1500 \qquad \frac{(20 + T + 24 + T)}{2} \times 30 = 1500 \qquad M1 \text{ A1}$$

$$T = 28 \qquad T = 28 \qquad A1 \qquad (5)$$

Question 2

Video Solution: 5(a) https://www.youtube.com/watch?v=Fn79BWQn-UE

5(b) https://www.youtube.com/watch?v=BYcuPM6bEIQ

(a)
$$v^2 = u^2 + 2as \implies 28^2 = u^2 + 2 \times 9.8 \times 17.5$$

Leading to $u = 21$ *****

(b) $s = ut + \frac{1}{2}at^2 \implies 19 = 21t - 4.9t^2$
 $4.9t^2 - 21t + 19 = 0$
 $t = \frac{21 \pm \sqrt{21^2 - 4x4.9.x19}}{9.8}$
 $t = 2.99 \text{ or } 3.0$
 $t = 1.30 \text{ or } 1.3$

M1 A1

A1

(5)

Question 3

Video Solution:

https://www.youtube.com/watch?v=rYYOO937nvY

(a)	$240 = \frac{1}{2}(u + 34)10$	M1 A1
	u = 14	A1
		(3)
(b)	$34 = 14 + 10a \implies a = 2$	M1 A1
	$120 = 14t + \frac{1}{2} \times 2 \times t^2$	M1 A1
	$t^2 + 14t - 120 = 0$	
	Solving, $t = -20$ or 6	DM 1
	<i>t</i> = 6	A1
	OR	
	$34 = 14 + 10a \implies a = 2$	M1 A1
	$v^2 = 14^2 + 2 \times 2 \times 120 \implies v = 26$	
	AND $26 = 14 + 2t$	M1 A1
	<i>t</i> = 6	DM 1 A1
		(6)
		[9]

Question 4

Attempt to set up an equation of motion for 'A to B' using $a=22$ and $t=2$. Sets up an equation in a and a only. (or a and V , where V is the velocity at B).		From A to B: a = 22 m u = u v = 2 v = 3 v = 4 v = 4 v = 2 v = 4 v = 4 v = 2 v = 4 v = 4
Sets up a second equation of motion using either ' A to C or ' B to C using either $o=126$ and $t=6$ (A to C) or $o=104$ and $t=4$ (B to C)		a = 126 m $a = a$ $126 = 6a + \frac{1}{2}a(6)^2$ a = 2 $126 = 6a + 18a$
Obtains $126 = 6u + 18a$ or $104 = 4V + 8a$ (OE)	A1	a = a $21 = u + 3a$ (2)
Attempts to solve the simultaneous equations. Note: If V is found, an attempt to find u must also be made. Obtains correct values for u and a .		t = 6 a Solving (1) and (2) simultaneously: $a = 6 \text{ ms}^{-1}, a = 5 \text{ ms}^{-2}$

Question 5

. (a)	Correct use of distance formula with at least three terms correct. Note: Omission of square root scores MOAO	M1	$AB = \sqrt{(-2-6)^2 + (7-1)^2}$ AB = 10
	Correct Answer	A1	
		2 marks	
(b)	Correct use of $\frac{y_2-y_1}{x_2-x_1}$ (condone one sign error)	M1	$m = \frac{7 - 1}{-2 - 6} = -\frac{3}{4}$
	Correct answer (OE)	A1	
		2 marks	
(c)	Attempt to find the gradient by rearranging $4x - 3y - 10 = 0$ to make y the subject.	M1	4x - 3y - 10 = 0 $3y = 4x - 10$
	Attempt to use $m \times m_{\perp} = -1$ for their gradients. (may be implied by attempt to use of negative reciprocal)	B1ft	$y = \frac{4}{3}x - \frac{10}{3}$
	Reaches correct conclusion (the lines are perpendicular) from correct working.	A1	∴ Gradient is $\frac{4}{3}$
		3 marks	$-\frac{3}{4} \times \frac{4}{3} = -1$
			∴ The lines are perpendicular.

Question 6

Equates the two expressions.		$y = 2x^2 - hx \qquad \qquad y = x^2 - h$		
Obtains $x^2 - hx + h = 0$		$\therefore 2x^2 - kx = x^2 - k$		
Attempt to calculate discriminant for their three-term quadratic.	M1	$x^2 - hx + h = 0$		
Determines that the curves intersect provided that $\Delta \geq 0$ and obtains $k^2-4k\geq 0$ Attempt to use valid method for solving <i>their</i> quadratic inequality e.g. sketching the graph / table of values		The curves intersect provided that $\Delta \ge 0$ $\therefore (-k)^2 - 4(1)(k) \ge 0$ $\downarrow_{(0, 0)} (4, 0)$		
		$k^2 - 4k \ge 0$ $k(k-4) \ge 0$		
Correct final answer from correct reasoning.	A1			
	6 marks	\therefore Solutions exist provided that $k \le 0$ or $k \ge 4$		